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I The general relativistic precession of a gyroscope in an inclined orbit is calculated. The 
! magnitude of the precession is found to be proportional to the cosine of the inclination angle, apart 
from periodic terms. It is shown that the geodetic precession cannot be separated from the 
motional precession no matter what initial orientation is  chosen for the gyroscope. 
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GENERAL RELATiiV I ST iC  PRECESS ION OF A GYROSCOPE 
I N  AN INCLINED O R B I T  

S U M M A R Y  

The general relativistic precession of a gyroscope in an inclined orbit 
is calculated. The inagnitude of the precession is found to be proportional to 
the cosine of the inclination angle, apart from periodic terms.  It is shown 
that the geodetic precession cannot be separated from the motional precession 
no matter what initial orientation is chosen for the gyroscope, 

INTRODUCTION 

A perfectly spherical gyroscope in orbit around the earth will precess 
a s  a result of two relativistic effects. The f i rs t  and larger  effect results from 
the iilotion of the gyroscope along a geodesic in a 4-space which is not flat; 
this is called the geodetic precession. The second effect is associated with 
the rotation of the earth and is called the nlotional o r  Lense-Thirring preces- 
sion. A polar orbit was originally chosen for  the Stanford Gyroscope Relativity 
Experinlent because this orbit w i l l  allow these two effects to be separated. 
Recently, i t  has been suggested that a preliminary test flight of the Gyro 
Experinlent be perforiiled on Skylab 11, for which an inclined orbit is planned. 
In this paper we calculate the expected gyroscopic precession for  such an 
inclined orbit and show that one cannot separate the geodetic and motional 
precession. 

THE GEODETIC PRECESS I O N  

Fi r s t ,  we will consider the geodetic precession, which is generally 
about two orders of iiiagnitude larger  than the motional precession. To obtain 
this precession we niust solve Schifffs equation [ I ]  for  the orbit under con- 
sideration. This equation w i l l  be written a s  



--+- 
which is a f i r s t  order  equation in the gyroscope spin vector S. 26IX/c2 is the 
Schwarzschild radius of the earth, and? and? a r e  the orbital position and - 
velocity vectors. L has been defined to be antiparallel to the orbital angular 
momentum vector. 

In the simple case of a circular orbit  for which ? is constant, the 
+ 

vector S simply precesses about L with constant angular velocity w = 1x1 
+ + 

and S . L remains constant. For  the more  general case in which L is not 
constant, one must obtainy and?, thus x, a s  functions A of time from an 
integration of the orbit equations and then obtain s a s  a function of time by 
integrating equation (1) .  

F o r  a circular inclined orbit about the earth,  the orbital plane will 
not remain fixed in space. Because the earth is not perfectly spherical, the 
orbital plane will precess about the earth's axis in such a way that the orbit 
inclination angle and radius remain nearly the same. So to good approxima- 
tion, one can consider that the orbital angular momentum, and thus L, will 
remain constant in magnitude and precess about the earth's axis with an angular 
velocity a.  Classical perturbation theory [2, equation 11.15.61 gives 8 a s  

where i is the orbital inclination, w is the orbital angular velocity, and J2 is 
0 - 

the earth 's  inass quadrupole moment. L can then be written in the form 

L = L1 c o s a t  
Y 

where Ll and L2 a r e  positive constants. The z-axis has been chosen to 
correspond - to the earth's axis while the x-y plane coincides with the equatorial 
plane. L has been given a negative z-component s o  that the orbital angular 

--a- 

momentuxn vector has a positive z-component. Initially L is in the y-z plane. 
It precesses in a direction consistent with the fact that the nodes regress  for  
an oblate body, 



---81 

When L i s  given by equation (4), the following analytic solution to 
equation ( 1) can be ~b ta~ ined ,  

S = -C1 sill$ s i n a t  - C2 [s in  (wt + +) c o s Q t  - cos  (wt + +) s i n Q t c o s $ ]  
X 

S = -C1 sin @ cos Q t  + C2[sin (wt + Ji) s i n Q t  + c o s  (at + Ji) cos  Q tcos  $1 
Y 

S = C2 sin @ cos ( a t  + Ji) + C1 cos @ , 
z ( 5 )  

where 

4 

and the constants C1, C2,  and Ji are determined by ihe initial condition on S. 
We will now denionstrate explicitly that this is a solution to equation (1). By 
differentiating equations (5 ) ,  we obtain 

-aCi  s in  @ cos  at + Cz [ ( Q  - o cos  41) sin (at + Ji) sin at 

= I - ( w  - Q cos @) cos  ( a t  + Ji) cos  a t ]  

a C 1  s in  @ s in  at + C2 [ ( a  - w cos @) sin (wt + ~ i )  cos at 
+ (w - Q cos  @) cos  (wt + $) sin a t ]  

- we2  s in  $ sin (wt + Ji) 



Using equations (4 ) ,  we have 

S L  - S L  S [-L,l - S J L ~  cos at] 
Y Z  Z Y  Y 

- - S [L1 sin at] - S I-Lz] 
z X 

S L  - S L  S ILl cos a t ]  - S [Li s i n a t ]  
X Y  Y X  X Y 

and now substituting from equation (5), this becomes 

Cl [L2 sin + - Li cos + I  cos a t  - C2L2 sin ( w t  + $) sin a t  
-C2 IL2 cos Q, + Ll sin $1 cos (wt + $) cos at 

-C1 [ L2 sin + - Ll cos $1 sin at - C2L2 sin (wt + $) cos at 
+C2 [L2 cos + + Ll sin + ]  cos (wt -I- $) sin at 

-LIC, sin (wt + $) [cos2 a t  + sin2 a t ]  - LiC2 cos + cos (wt + $1 
[-sin a t  cos a t  + cos at sin a t ]  - 

Now from equations ( 6 ) ,  we have 

L2 sin + - Li cos Q, = L2 L + a  ( )  - ( 2 w  ) = -a(') = -a s i n +  

L2 cos Q, + Ll sin + = L2 
w 

L, = -0 + (L, + a) = - (Q - w cos +) 

Li = w sin + , 

so  that a comparison of the expressions for  d%/dt and x shows that they 
a r e  equal. Hence, equations (5) have been shown to be a solution of 



equat ia i~ ( I )  when is given by eyuatioll ( 4 ) ,  It can also be shown, using 
equations (5)  that 

---3 

so that S remains constaiit in magnitude, as  it must. 

Tliis solution to equation (1) was obtained by transforming to a 
---3 

rotating coordinate systein in which L is at  rest .  In this system, 'S precesses 
about and one can write a solution to equation (1) in the rotating systein 
iiiiinediately. When this solution is transformed to the nonrotating system, 
equations (5) a re  obtained. The probleni is mathematically identical to the 
niotion of a inagnetic dipole in a magnetic field with a constant z-component 
and a rotating coniponent in the x-y plane. This configuration is often 
considered in NMR work. 

Using standard identities for the products of two trigonometric 
functions, equations (5)  can be written in the form 

(1 + cos cp) 
S = -Cl sin @ sin a t - C2 

2 
sin [ (w - a )  t + $1 

x 

(1 - cos cp 
-c2 2 ) sin (w + a ) t  + $1 

(1 + cos cp 
S = -C1 sin cp cos 52t + C2 

2 
) cos [ (w - a)  t + $1 

Y 

(1 - cos cp) 
-C2 2 cos [ ( w  + a ) t  + $1 

S = C1 cos @ + C2 sin cos (wt + $) 
z 

so that: consists of t e rms  with frequency w - Q, 52, w, and w + a .  We can 
simplify this expression by using the fact that L << a ;  that is 

= [ i , 0 5  x 
/ R \  rad 

= 6 .6  10-9  -- --- 
( r  I rev 



where R is tile earth" radius .  Now since J2 IBI 1 ow3 R ~ ,  we have from 
equation ( 3 )  that f;2 - w - 5 degrees/day for a near-ear th  orbit  so  that 

o 

Expanding the f i rs t  of equations (6) to f i rs t  order in L/Q, we have 

s o  that 

and 

sin 4 - L1/Q , (8) 

all. valid to first order in L/Q. By expanding o to second order in L/G and 
using the expression for cos 4 in equations ( 6 ) ,  we find 

cos 4 - 1 - 
2 Q '(h)2 ' 

so  that ( I  - cos gj) is second order in (L/Q) . 
If we let the initial value of? be?', then a t  time t = 0 ,  equations (5) 

give 

0 
S = -Cl sin 4 + C2 cos + cos $I 
Y 

S = Cl cos 4 + C2 cos z,b sin 4 . 
z 

These three equations can be solved for C1, C2 and to give 



0 0 
C i  = S cos Q - S s in  Q 

Z Y 

+ 2 (s;) (S:) cos @ sin + 1" , 

and a substitution of equatiolls (10) into equations (11) verifies that this is a 
-0 

solution. So that for any initial S , a solution can be constructed. A t  any 
time t,  the angle 8 through which the spin vector% has precessed can be 
obtained from the equation 

where: is given by equations (5) and?' by equations (10). This is not a 
very convenient way to compute 8. Since €3 is very small,  i t  is eas ier  to use 
the following metllod. Define the vector g by the equation 

Then, we have 

1/2 

sin 8 = 
, z x z O ,  - - x 0  - - [ ( s x x O )  ( Z X ? ~ , ]  . 

s2 s2 s2 

Using a standard vector identity this becomes 

sin = [SZB~ - (1~' * 5)2] % / S 2  

since 

Now 



B* y2 
[S2B2 + = f + !(P)Y' , sin 8 = - s2 4 S 

A general formula for  sin 8 can be calculated using equations ( 5 ) ,  ( l o ) ,  (12), 
and (14) but the result is quite complicated, So we will res t r ic t  ourselves 

-0 
to three specific choices of S and work out explicit expressions for  8 in 
these cases only. 

0 0 0 4 

1. S = S, S = 0, SZ = 0; i. e. , S is initially perpendicular to 
Y X 

the earth's axis and in the plane formed initially by 'f: and the earth's axis. 
From equations (10) we have 

I) = 0 , Ci = -S sin (P , C2 = S cos (P 

s o  that equations (5) become 

(1 - cos @ - cos (P 2 
) sin (w + ~ 2 ) t  I 

(1 + cos (P) 
sin2 @ cos a t  + cos (P 

2 
cos (w - a ) t  

Y 

(1 - cos @ - cos (P 
2 

cos ( W  + a ) t  I 
S = S [cos @ sin (P (COS wt - I ) ]  , z 

Now from equations (8) and (9) we note that sin2 (P and (1 - cos (P) a r e  
second order in L/a .  Also, we a r e  interested in tiines of the order of 1 year 
so  that from equation (7) 



since I, - 3 ,  5 x rad/year, We can then expand the s in  funetiorn to  obtain 

so  that S is linear in t to f i r s t  order in L/Q. Also 
X 

S = S -l [cos wt - 11 z [: I 
from equations (8) and ( 9 ) ,  so  S oscillates with frequency w - Q to f i r s t  

z 
order. The precession angle 8 can be calculated a s  follows: Using equations 
(12) and (13) we have 

2 (1 + cos cp) = 1 - sin cp cos Q t  - cos cp 
2 

cos (w - Q ) t  

( I  - cos cp + cos cp 
2 

) cos (w + Q ) t  1" 
If we now use equations (8 ) ,  (9 ) ,  and (15) to expand this to second order in 
L/Q and (w - Q ) t ,  we find that B/S << 1 and 

so  e is not strictly linear in t but only becomes s o  for  t >> 
(L) = 2 (g) L2 Q - 10 days, where T 60 days is the precession period of 0. 

0 0 0 4 

2. S = S, Sv = 0, SZ = 0; i. e .  , S is initially perpendicular to 
X 

the earth 's  axis and touthe initial value of x. From equations (10) we have 

S = S  cos (w - a )  t + 
X 2 

cos (w  + $2) t J 



S = S  s in (a  - a) t  - 
2 

s in  (a + a) t 
Y 

S = S sin $I sin a t  
z 

Again we see  that, since (1 - cos 4)  is second order in L / a ,  we have after 
expanding sin (w - a ) t  to first order that 

and S has an oscillatory behavior with frequency o - $2. The precession 
z 

angle is calculated in the same way a s  is case 1: 

[ I -  ( i  + cOs +) COS (W - Q)t  + (1 - COS 4 
2 2 ' cos  (w + .)'I% . 

Expanding these terms to second order in L/Q and (o - a )  t ,  we find again 
that B/S << i and 

@ = = ( + ($)2 [ 1 - cos (w + a) t  
S 2 li" 

and again we have an oscillatory term in the expression for  8 but the detailed 

time dependence is different from case 1. For t >> (L) , @ again becomes 
linear in t. L2 

0 0 0 4 

3.  S = S, Sx 
= sY 

= 0; i. e. , S is initially parallel to the 
z 

earth's axis. Equations (10) give + = 0 ,  C1 = S cos $I, C2 = S sin cp ,  

(1 + cos cp 
@ cos @ sin at + sin $I 

2 
) sin ( w  - a )  t 

+ sin @ sin (a + a) t 



ill Q GOS Q eos at - sin Q 60s (u - Q ) t  

(1 - cos q5 + sin 41 
2 

) cos (w + a )  t 

S = S [cos2 @ -I- sin2 cp cos w t ]  z 

The dominant ternis i n x  become, to f i r s t  order in L/Q, 

witli only terlas with frequency a. S is constant to f i r s t  order in L/n.  The 
z 

expression for the precession angle is 

= a s i n  $I [ I  - cos w t ]  1/2 

so  that 8 is periodic with frequency w 52. 

THE MOT IONAL PRECESS ION 

The coniplete version of Schiff's equation, including both geodetic and 
liiotional precession, is 



w h e r e 7  is the ea r th f s  angular velocity and I i ts  moment of inertia. Now the 
f i rs t  terlli in N oscillates with period equal to the orbital period so  that the 
exact solution to equation (24) f o r  a precessing circular orbit is much more 
complicated than the solution to equations (5 ) ,  which we have already found. 
However, the effect of can be taken into account by replacing by i t s  
average over one orbital period T. The justification fo r  this statement is 
contained in the following argument:' If we integrate equation (24) over an 
orbital period t and divide by T ,  we obtain 

- 
Now S ( t f )  can be expanded in a Taylor ser ies  about t: 

4 d~ (t) 
S ( t f )  = F ( t )  + 

dt 
( t f  - t )  + . . . 

--* 

= S (t) + [F(t)  x z:' (t) ] ( t f  - t) t. 
te rms of higher 

order  in I 
4 

Defining the average value of S over an orbital period a s  

we see  that if we differentiate this equation we obtain the left hand side of 
equation (25). So that substituting the Taylor ser ies  f o r 3  ( t f )  in the right 
hand side of equation (25) gives 

t+ T 

dt dtf xf ( t f )  x { G t )  + [%!(t) x xf (t) 1 (tf  - t )  + . . .) . 

Now if we neglect the second and higher te rms in the bracket and we replace 

S ( t)  by <S(t)) in the bracket, this equation will still be valid to first order  

in c,  and it can then. be written 

I .  A more rigorous argument could probably be given by applying some kind 
of elassiea.l pe r tu rba t io~~  theory to equation (241, 



+ --. 
This ixeans that to f i r s t  order  in Lt  ( t )  , the average value of S (t) over an 

orbital period satisfies equation (24) with xf ( t)  replaced by <L' ( t o  so 

that we can replace by <z> in equation (24) if we a r e  interested only in 
+ 

the average value of S over an orbital period. 

This type of arguinent is borne out by the solution given in the f i r s t  
-f 

section if we consider T to be T ,  the period of the precession of L rather  than 
the orbital period. The ternis with period 7-= 27r/Q in equations (5)  a r e  seen 
to contribute nothing to the average value of S, which is seen to precess  about 

+ 4 

the earth 's  axis; i .  e .  , about the average value of L,  to f i r s t  order in L. 

We also note that this arg~ulzent allows us to drop the restriction to 
circular  orbits in the previous calculation. Since F x  7 is a constant for  

1 1 
noncircular orbits,  we sirnply replace a by <-$> , the average of 7 over 

r r 
the orbital period, in the expression for  L. This is given by [2, equation 
11.15.41 

where a is the seininlajor axis of the orbit and E the eccentricity. 

We w i l l  now compute <H> for a circular orbit with inclination 

angle i. To do this, we construct a coordinate system such that the orbit 
is the XI-yt plane and the orbit nornial is the z f  axis. We will let; be in 
the yl-zf plane, so that it will make an angle i with the z t  axis. In this 
coordinate systeni the orbit is given by 

+ d 
and o ' = 0, oy' = a sin i, o ' = o cos i, so that (o a r) = ao ' cos cut. 

X z Y 



Letting <H> , <H;) . <H:) denote the components of <fi) 
in this coordinate systena we have 

ex'> = 
f [ ( - 3  s i n a t )  ( o '  cos a t ) ] d t  

T 
0 

Y 

Performing a rotation about the xl-axis through an angle i we have 

H = 
<H;) cos i - <H;> sin i 

3GIo 
= - p ~ g  [sin i cos i ]  

2c a 

<HZ> = <H;) sin i + <H;> cos i 

GIo sin2 i [- I0 - cos i = 'T [i - 3 cos2 i ]  1 2 c a  



-+- 
Since the orbital angular momenturn, and thus L, relnains in the y-z plane after 

the rotation, we see that <ti) has col~~pouenls only in  the plane which contains 
4 

L and; The co~nponents of <fi> perpendicular to this plane average to zero, 

and we expect this to renlain true for noncircular orbits. Now a s  the orbit 
+ 

plane and L precess,  < fi) will remain in the plane described by z and:, 
and + <E > will precess about the earth axis with period T = LT/R. This 

means that the solution to equation (24) for L' = - L + (g) canbeobtainedby 
-)I 

substituting L' for z in the solution which we found previously for equation ( 1) . 
In other words we simply substitute L i  for Li and Ld for L2 in equations (5) 
and all subsequent equations in the f i rs t  section where 

3GIu 
L1' = L1 t- [sin i cos i ]  

2c r 

It is now clear_that contributes to the precession no matter' what 
initial orientation for S is chosen. If: is initially oriented perpendicular to 
the earth's axis (cases 1 and 2) , i t  will, apart from effects with period 7, 
precess about the z-axis with angular velocity Lzf a s  described by equations 
(16),  (17),  ( l a ) ,  (1 9 ) ,  and (20) with Ll (L2) replaced by Lit (LZ1) .  

Both and will contribute to the precession. If? is initially 
aligned parallel to the earth's axis (case 3 ) ,  i t  will exhibit oscillatory 
behavior with period 7 ,  + a s  described by equations (21), (22) , and (23), with 
L1 replaced by Lit .  So H contributes to the precession in this case also. 
For a general inclination angle i ,  fi will contribute to the precession for  any .-+ + 
initial orientation of S, since both Llf and Lzt contain the effects of H. (The 
only exceptions to this statement occur for a polar orbit, an equatorial orbit, 
and an orbit for which cos i = I/&, i = 54 degrees. ) So that in general it 
is not possible to separate the effects of 'Z and 8 and thus verify the existence 
of the geodetic and Lense-Thirringprecessions separately for an inclined orbit. 

SKYIAB I I ORB IT  

The noniinal Sliylab I1 orbit will be - circular at  235 nautical miles 
inclined a t  35 degrees. We will eoi~ipute S for this case for the three initial 
orientatioi~s disc~rssed previously. For this orbit 



and Keplerfs  Law gives for  the period T 

Y2 
= 93 min 

We have R/ r  = 0.94, so  L = 7.2 a r c  sec/year, and L2 = L cos i = 5.9 a r c  
sec/year . 

Now in units of earth radii R 

so  that equation (3) gives ~2 = 6.5  degrees/day, T = 55 days, and 

(2) = (5) sin i = 0.1  o a r c  sec. 

The components of for cases I ,  2,  and 3 a r e  plotted in Figures 1 
through 7, using equations (16),  (171, (18),  ( I S ) ,  (20),  (21), (22),  and 
(23). For this case, L2 differs from Lzl by less than I percent. 
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